Mutual information in coupled multi-shape model for medical image segmentation

نویسندگان

  • Andy Tsai
  • William M. Wells
  • Clare M. Tempany
  • W. Eric L. Grimson
  • Alan S. Willsky
چکیده

This paper presents extensions which improve the performance of the shape-based deformable active contour model presented earlier in [IEEE Conf. Comput. Vision Pattern Recog. 1 (2001) 463] for medical image segmentation. In contrast to that previous work, the segmentation framework that we present in this paper allows multiple shapes to be segmented simultaneously in a seamless fashion. To achieve this, multiple signed distance functions are employed as the implicit representations of the multiple shape classes within the image. A parametric model for this new representation is derived by applying principal component analysis to the collection of these multiple signed distance functions. By deriving a parametric model in this manner, we obtain a coupling between the multiple shapes within the image and hence effectively capture the co-variations among the different shapes. The parameters of the multi-shape model are then calculated to minimize a single mutual information-based cost criterion for image segmentation. The use of a single cost criterion further enhances the coupling between the multiple shapes as the deformation of any given shape depends, at all times, upon every other shape, regardless of their proximity. We found that this resulting algorithm is able to effectively utilize the co-dependencies among the different shapes to aid in the segmentation process. It is able to capture a wide range of shape variability despite being a parametric shape-model. And finally, the algorithm is robust to large amounts of additive noise. We demonstrate the utility of this segmentation framework by applying it to a medical application: the segmentation of the prostate gland, the rectum, and the internal obturator muscles for MR-guided prostate brachytherapy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coupled Shape Distribution-Based Segmentation of Multiple Objects

In this paper we develop a multi-object prior shape model for use in curve evolution-based image segmentation. Our prior shape model is constructed from a family of shape distributions (cumulative distribution functions) of features related to the shape. Shape distribution-based object representations possess several desired properties, such as robustness, invariance, and good discriminative an...

متن کامل

A Novel Subsampling Method for 3D Multimodality Medical Image Registration Based on Mutual Information

Mutual information (MI) is a widely used similarity metric for multimodality image registration. However, it involves an extremely high computational time especially when it is applied to volume images. Moreover, its robustness is affected by existence of local maxima. The multi-resolution pyramid approaches have been proposed to speed up the registration process and increase the accuracy of th...

متن کامل

Object-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images

As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...

متن کامل

Automative Multi Classifier Framework for Medical Image Analysis

Medical image processing is the technique used to create images of the human body for medical purposes. Nowadays, medical image processing plays a major role and a challenging solution for the critical stage in the medical line. Several researches have done in this area to enhance the techniques for medical image processing. However, due to some demerits met by some advanced technologies, there...

متن کامل

Medical Image Segmentation using Weak Priors

Image segmentation is a core technique in medical image analysis. By enabling semantic interpretability of raw image data, it allows both medical experts and automatic processing software to diagnose and to plan for the treatment of pathologies with greater accuracy and efficiency. An additional use-case for segmentations is to learn models of anatomical variability, for example statistical sha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Medical image analysis

دوره 8 4  شماره 

صفحات  -

تاریخ انتشار 2004